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Abstract: This paper investigates an approach to the problem of change detection in multitemporal remote sensing images using 
Support Vector Machines (SVM) based on RBF kernel (Radial Basis Function) combined with a new relevance metric called Delta b 

(Δb). The methodology is based on the difference of the fraction images produced for each date. In images of natural scenes the 

difference in soil and vegetation fractions tends to have a symmetrical distribution around the mean of its pixels. This fact can be used 
to model two normal multivariate distributions: change and non-change. The Expectation-Maximization algorithm is implemented for 
estimating the parameters (mean vector, covariance matrix, and prior probability) associated with these two distributions. Random 
samples are extracted from these two distributions and used to train a SVM classifier based on RBF kernel. The proposed methodology 
is tested using multi-temporal data sets of multispectral images Landsat-TM covering the same scene, located in Roraima state, in two 
different dates. Test samples are obtained by the use of Change Vector Analysis (CVA) and used to validate the estimation method of  
relevance. It is expected that this methodology could be applied to detection of change for multispectral and hyperspectral 
multitemporal images used in remote sensing. 
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1. Introduction   

Detecting changes in a set of images of the same 

scene taken at different times is of general interest to a 

great number of applications in various areas of 

knowledge, such as video surveillance [1], biology and 

medicine [2]. Particularly in the area of remote sensing, 

the techniques of detecting changes in multitemporal 

images have been applied in agricultural, forest, urban, 

glacial and ocean monitoring, among others [3].  

Two main approaches to the problem of change 

detection have been proposed in the literature for use in 
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remote sensing: the supervised method and the 

unsupervised method [4]. 

Although the supervised method offers some 

advantages compared to the unsupervised method, 

such as defining the nature of the type of change that 

occurred, obtaining training samples is often a 

difficult and expensive task. Consequently, the use of 

unsupervised methods for changes detection is, at the 

operational level, more indicated and has been widely 

explored by researchers in the development of their 

work [3]. 

Among the various unsupervised methods of change 

detection proposed in the literature, the most widely 

used is the one known as Change Vector Analysis 

(CVA).  
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An interesting technique for the treatment of change 

detection is presented in [5] using the concept of 

mixture pixel. The mixture pixels phenomenon occurs 

when the same pixel comprises two or more distinct 

classes, called in this context endmembers. Thus it is 

possible to derive a new set of data with the so-called 

fractional images, which inform in each pixel the 

fraction occupied by each of the terrain components. 

This approach has two advantages: it allows a sub-pixel 

level analysis and eliminates the need for radiometric 

normalization of images acquired at different dates. 

Thus, the difference images are produced from the 

subtraction of components generated from the 

multispectral images. 

In recent years, researchers have focused on the use 

of kernel-based classifiers in various application areas 

such as face recognition, text categorization, time 

series prediction, and handwriting recognition with 

good results.   

Among these classifiers are the Support Vector 

Machines (SVM), the Kernel Principal Component 

Analysis (KPCA), the Kernel Fisher Discriminant 

(KFD) and others [6]. 

SVM is a very interesting method for dealing with 

the problem of classificating hyperspectral images 

since it works very efficiently with spaces of high 

dimensions, and it also handles noisy samples in a 

robust way and produces the function that defines the 

boundary of decision from a subset of training samples 

[7].  

In this work the changes detection problem is 

approached considering that the distributions for the 

classes “change” and “non-change” presenting a 

normal multivariate distribution. Based on this 

assumption, the Expectation-Maximization (EM) 

algorithm [8] is used to estimate the statistical 

parameters of these distributions and thus to obtain 

training samples for the later classification stage using 

the SVM classifier, using the RBF kernel and, from the 

results of this classification, a new pixel relevance 

metric is obtained. In order to evaluate this 

methodology, two experiments were carried out: one 

with pre-selected test samples obtained from the 

translated CVA method [9] and another comparing the 

results obtained in this work with those of [3] for the 

same image. 

2. Material and Methods 

The changes detection process investigated in this 

work consists of the following steps: preprocessing 

(where the images are recorded and the fraction images 

are produced), data analysis (production of images), 

estimation of parameters of the probability density 

function of classes through the EM algorithm, 

production of the training samples and classification 

with SVM and determination of pixels relevance from 

the classification results [9]. 

The difference images are produced from the 

subtraction of the vegetation and soil components and 

of the fraction images generated from the multispectral 

images [5] and the method used to estimate these 

fractions of the mixing components (endmembers) of 

each image pixel is the Linear Spectral Mixture Model 

(MLME) [10]. 

The values found by the MLME should best 

represent the components (endmembers) for the image 

in question. The fractionation result will count with a 

number of images equal to the number of components 

chosen to represent the region. 

In the images used in remote sensing, the vegetation, 

soil and shade/water components are frequently used. 

However, in this work only the vegetation and soil 

components were used, similarly to what was proposed 

in [3].  

Fig. 1 shows the scattering of the difference image 

data, considering in the vertical axis the differences of 

soil fraction and in the horizontal the differences of 

vegetation fraction. 

By analyzing Fig. 1, a negative correlation between 

the distribution of vegetation and soil fractions can be 

verified.  
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For this image it is expected that the pixels that have 

not undergone significant change between the two 

dates (non-change class) occupy a region near the 

center of the dispersion diagram (inserted in the circle 

of Fig. 1), whereas pixels that have undergone changes 

tend to dislocate to one of the two ends of the data 

dispersion diagram, depending on the type of change in 

these pixels (soil region changing to vegetation or vice 

versa) [9].  

Classes ω1 and ω2, respectively, are considered here 

as the change and non-change classes. Thus, M1, S1, 

P(ω1), M2, S2, P(ω2) represent the averages vectors, 

covariance matrices and a priori probabilities of each 

class. For initial values of the parameters in the EM 

algorithm, some considerations are necessary and can 

be illustrated in Fig. 1.  

The change class has a bivariate normal distribution, 

elongated in the direction of greater dispersion, which 

is estimated by the first eigenvalue (λ1). Thus, for 

initial value in EM, using the covariance matrix for all 

samples of differences in fractions is suggested. The 

samples of the non-change class, however, are 

concentrated around the origin, presenting a small 

dispersion, caused by the inevitable noises in the data 

and non-significant changes present in this class. This 

dispersion will be estimated by the variance in the 

orthogonal direction to the one of greater variation 

(direction of the second eigenvector with magnitude  

 
Fig. 1  Scattering of image-difference data [11]. 

estimated by the second eigenvalue - λ2). The 

distribution of this class therefore tends to be in a 

circular region around the origin with a radius 

proportional to λ2 [9]. 

Since the number of pixels exhibiting little change or 

no change is usually much greater than the number of 

those showing clear signs of change, the initial values 

of the a priori probabilities can initially be estimated to 

be 0.1 for change and 0.9 for non-change. 

Thus, the initial estimates for each class that were 

used in the EM algorithm to obtain the parameters of 

the change and non-change classes are given by: 
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After the application and convergence of the EM 

algorithm for these initial parameters, the estimated 

parameters of the change and non-change class 

distributions were generated and from these were 

generated the training samples that will be used to 

train the SVM classifier.  

The SVM classifier, used in this work, is based on 

[12], whose problem can be expressed by equations (2) 

and (3). 
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where: α are Lagrange multipliers, M is the number of 

samples considered, K (xi, xj) is the kernel function 

and C is the margin parameter or cost constant. 

In this work the RBF kernel, described in equation 

(4), was used.  

( )
2

', 'K e γ− −= x xx x
        (4) 

The algorithms used to implement the SVM 

classifier were developed in the MATLAB software. 

For the purpose of training the classifier, we used 
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random samples provided by the function mvnrnd.m, 

from the MATLAB function library, using in each case 

the parameters estimated by EM of the respective class 

distribution. The sample pixels, after being generated 

by this function, are evaluated in the two functions of 

probability distributions for soil and vegetation, so that 

the sampled pixel that presents the highest probability 

of belonging to one of the distributions is labeled in the 

class corresponding to that distribution. By proceeding 

like this, we intend to ensure, statistically, that 

randomly generated samples represent, in fact, the 

classes they represent.   

The RBF kernel SVM classifier is then trained with 

these samples, generating a decision function that will 

be used for class separation. Finally, from the results 

obtained by this decision function the metrics of 

estimation of pixel relevance are obtained, being from 

now on called Delta b (Δb).  

The Δb metric is the vector resulting from the 

difference between the value of the decision function 

generated by the SVM classifier at any pixel of the 

image and the value of the decision function of the 

projection of this point on the optimal separation 

hyperplane in a direction parallel to the direction 

determined by the axis corresponding to the dependent 

variable of the decision function, as shown in Fig. 2 

below. More details can be seen in [9]. 

Fig. 2 presents a view of the x1x3 plane of space R3 

(mapped or characteristic space), where a pixel xa = (x1, 

x2, x3) is mapped from the original space (difference 

image) to this space. This point is inserted in a plane 

determined by the decision function D(xa) = ba (plane 

in red), where ba corresponds to the value of the 
 

 
Fig. 2  Visualization of the relevance metric Δb. 

decision function for the point xa. This plane is parallel 

to the plane of optimal separation between the change 

and non-change classes, which is characterized by the 

decision function D(x) = 0 (gray plane). The projection 

of point a parallel to the axis x3 on the plane of optimal 

separation determines point xa’. The difference 

between the values of the decision function for these 

points defines the vector Δb. The angle determined 

between this vector and the vector normal to the 

optimal separation hyperplane (vector w) is β. 

It should be emphasized that this metric does not 

estimate a percentage change value of the pixel over 

time, nor even has a specific statistical significance, but 

estimates the degree of confidence with which a pixel 

can be labeled in a particular class. Considering that 

there are only two complementary classes in change 

detection (change and non-change), one can use only 

the relevance on one of them, in this case, the one that 

refers to the change classes, because it is possible to 

declare that a pixel having high relevance in one of the 

classes means that it has low relevance in the other and 

vice versa. Thus, this metric will allow the estimation 

of a pixel relevance classified to the class change only 

by the value of Δb. The relevance value represented by 

Pc(x) for the change class will be given by the ratio 

between the highest value of Δb and the smallest value 

of Δb, according to Eq. (5), as follows: 
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     (5) 

and the relevance of the non-change class Pnc (x) is 

given by equation (6): 

( ) ( )1nc cP P= −x x         (6) 

It can be seen from the above equations that the 

lowest value of Δb obtained after the classification will 

correspond to 0 (0% of relevance to the class) and the 
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largest value of Δb will correspond to 1 (100% 

relevance to the class), that is, pixels with values of Δb 

zero, or close to zero, indicate that they are unlikely to 

belong to the change class and therefore have a high 

probability of belonging to the non-change class. 

Similarly, pixels with value 1 or close to 1 will indicate 

a high probability of belonging to the change class and, 

therefore, low probability of belonging to the 

non-change class. 

At this point, it is necessary to state that the 

determination of this relevance metric is dependent on 

the choice of the kernel used and the parameters 

assigned to it during the classification process with 

SVM. 

3. Results and Discussion 

Two Landsat 5-TM images covering the same area 

were considered for the experiment, located in the state 

of Roraima, as shown in Fig. 3. The image of the first 

date was acquired in October 1991 and the image of the 

second date in April 1994. In the experiments, only the  
 

 
(a) 

 
(b) 

Fig. 3  (a) Image of Date 1, composition in false color 5 (R), 
4 (G), 3 (B). (b) Image of Date 2, composition in false color 5 
(R), 4 (G), 3 (B). 

resulting fractions for vegetation and soil were 

considered. The images used have 390.625 pixels 

distributed in a square of 625 by 625 pixels. 

Two procedures were used to evaluate the accuracy 

of the results in this study: 

a) Quantitative analysis carried out through the 

production of a set of controlled test samples using the 

adapted Change Vector Analysis (CVA) technique.  

[9]. 

b) Qualitative and quantitative analysis carried out 

through the construction of a map of relevance for the 

whole image. 

For the quantitative evaluation, we used a set of 

randomly collected test samples from the fraction 

difference image with the vector change module 

recommended in the CVA technique, however, instead 

of considering the origin of the change vectors in (0.0) 

the origin of the vectors translated to the mean of the 

non-change class was considered. The test samples 

were taken like this because no terrestrial truth data 

were available for the study image. The translated 

CVA technique [9] will generate for each image pixel a 

vector having as its origin the data of the image pixel 

taken at date 1, and as the end of that vector the data of 

the same pixel taken at date 2, both considering as the 

origin of the vector system the mean of the non-change 

class. The use of this technique will allow a reliable 

estimation of the change in the sampled pixels, that is 

to say, pixels presenting a translated CVA module with 

values greater than 0.3 and lower than 0.6 will 

correspond to pixels that showed some significant 

change over the period. Module values above 0.6 were 

disregarded so that no corresponding shade and cloud 

samples were used, which certainly corresponded to 

the change, but did not represent the soil and vegetation 

components. Pixels with transferred CVA module 

smaller than 0.1 are those that did not show significant 

change over the period. The choice of these intervals is 

to ensure that the test samples are representative of 

their respective classes. 
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Thus, with the use of the transferred CVA module, 

900 pixels of sample were collected for each class, in a 

random and uniform way throughout the difference 

image, guaranteeing samples with comprehensiveness 

throughout the image and without any bias in their 

choice. The samples thus collected should be used to 

statistically prove the efficiency of the method for 

determining relevance.  

Table 1 shows, in order, the best and worst result for 

each training sample set used in the RBF kernel SVM 

classifier for the following variables: the mean of the 

relevance value, the standard deviation of the 

relevances, and finally, the percentage of pixels 

correctly classified in the change and non-change 

classes. 

 

Table 1  Evaluation of relevance in the test sample generated from the CVA Module with translated center and using RBF kernel 
for change and non-change classes. 

Number of 
training 

samples for the 
classifier 

Kernel 
coefficient 

(γ ) 

Average 
relevance 

value in the 
change class 

(%) 

Standard 
deviation of 
relevance in 
the change 
class (%)

Percentage of pixels 
classified with 

relevance above 
50% in the change 

class 

Average 
relevance value 

in the 
non-changing 

class (%) 

Average 
relevance value 

in the 
non-changing 

class (%) 

Percentage of 
pixels classified 
with relevance 

above 50% in the 
non-change class

200 1 65.96 9.36 100.00 87.70 9.58 100.00 

200 2 65.58 9.50 100.00 74.31 15.16 87.56 

300 1 67.67 10.33 100.00 90.00 9.24 100.00 

300 95 69.43 9.63 100.00 84.55 11.23 99.67 
 

From the results presented in the table above for the 

relevance obtained with the RBF kernel, it is observed 

that with the appropriate parameters, the pixels of the 

test sample were correctly classified according to the 

relevance informed by the metric Δb, showing a 

minimum hit above 87% of pixels, in the worst case. 

Thus, the results, generally speaking, show that the 

proposed metric can adequately classify the pixels of 

the test sample in the change and non-change classes, 

according to the distributions theorized for them. Based 

on the good relevance results obtained with the test 

sample, one can affirm that the relevance metric Δb is 

efficient. 

For the second experiment, a qualitative and 

quantitative analysis of the study image was performed 

using 200 and 300 training samples for each class and 

for the parameter γ the values 5, 10, 80, 85, 90, 95 and 

100, where the results were compared to those obtained 

in [11]. This comparison aims to corroborate the 

quality of the proposed metric in relation to another 

already accepted in the literature, due to the lack of 

terrestrial truth data of the image in use. 

Fig. 4 shows in (a) and in the map of difference 

between the relevance of the methodology proposed 

and that used in [11] and in (b) the map of relevance to 

the proposed methodology using the RBF kernel with 

300 training samples and γ = 90. 

A qualitative analysis by means of a visual 

inspection on the map of Figure 4a) shows that the 

relevance map generated by the proposed methodology 

and the one obtained in [11] are very similar, since the 

difference between these relevances in most pixels 

ranges from -0.15 to 0.15. In Fig. 4b) the pixel 

relevance map using RBF kernel SVM for 300 training 

samples and γ = 90 is presented, which has the best 

correlation between the relevance values in the two 

methodologies. The value of the Person correlation 

coefficient R calculated between these maps presents 

an expressive value (R = 0.9728) which characterizes a 

highly significant correlation between them. In 

addition, the mean differences between maps are close 

to -0.0176, with a standard deviation of approximately 

0.092. It was also found that the R value calculated 

over all the tests in this experiment for various sample 

sizes and values γ, except for the test with 200 training 

samples and γ = 5 (with R = 0.66), had an R coefficient 

higher than 0.80. Thus, except for one test, all the  
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(a) 

 
(b) 

Fig. 4  a) Map of relevance difference between Zanotta 
(2010) and proposed methodology. b) Mapping Relevance 

using kernel RBF 300 training samples and γ = 90. 
 

others present a very significant correlation between 

the relevance maps. 

Thus, the measures of pixel relevance proposed in 

this work are highly correlated to the relevance 

measure presented in [11]. 

4. Conclusion 

The experiments developed in this work show the 

adequacy of the proposed methodology, producing 

results that are quite acceptable in the detection of 

changes in soil cover. In particular, in the experiment 

involving all the pixels of the image under study, the 

pixel relevance results obtained in this work are similar 

to those obtained in [11].  

However, despite these good results, it is important 

to point out that the proposed method is aimed at 

detecting changes in environments where vegetation 

and soil components prevail. Therefore, it is not 

possible to affirm that this methodology, when applied 

to images with different components, presents results 

similar to those obtained in this work. 

However, since the results are compatible with those 

of Ref. [11] and they were obtained with few training 

samples, one of the characteristics of the SVM 

classifier, it is expected that this relevance metric can 

be applied in the detection of change in multispectral 

images, both multispectral and hyperspectral images in 

remote sensing. In particular, in the latter, with better 

results, since the SVM classifier is not to be affected by 

the Hughes phenomenon, unlike parametric classifiers 

like the one used in [11]. 
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